
Revisiting Fundamentals of Experience Replay

William Fedus * 1 2 Prajit Ramachandran * 1 Rishabh Agarwal 1 Yoshua Bengio 2 3 Hugo Larochelle 1 4

Mark Rowland 5 Will Dabney 5

Abstract

Experience replay is central to off-policy algo-
rithms in deep reinforcement learning (RL), but
there remain significant gaps in our understanding.
We therefore present a systematic and extensive
analysis of experience replay in Q-learning meth-
ods, focusing on two fundamental properties: the
replay capacity and the ratio of learning updates to
experience collected (replay ratio). Our additive
and ablative studies upend conventional wisdom
around experience replay — greater capacity is
found to substantially increase the performance
of certain algorithms, while leaving others unaf-
fected. Counterintuitively we show that theoreti-
cally ungrounded, uncorrected n-step returns are
uniquely beneficial while other techniques confer
limited benefit for sifting through larger memory.
Separately, by directly controlling the replay ra-
tio we contextualize previous observations in the
literature and empirically measure its importance
across a variety of deep RL algorithms. Finally,
we conclude by testing a set of hypotheses on the
nature of these performance benefits.

1. Introduction
Experience replay is the fundamental data-generating mech-
anism in off-policy deep reinforcement learning (Lin, 1992).
It has been shown to improve sample efficiency and stability
by storing a fixed number of the most recently collected
transitions for training. However, the interactions of ex-
perience replay with modern algorithmic components of
deep RL agents are still poorly understood. This lack of
understanding impedes progress, as researchers are unable
to measure the full impact of algorithmic changes without
extensive tuning. We therefore present a large-scale study

*Equal contribution 1Google Brain 2MILA, Université de
Montréal 3CIFAR Director 4CIFAR Fellow 5DeepMind. Corre-
spondence to: William Fedus <liamfedus@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

to understand the interplay of learning algorithms and data-
generating mechanisms in order to inform the design of
better algorithms.

Earlier works investigating replay buffers have often fo-
cused on individual hyperparameters, such as the capacity
of the replay buffer (Zhang & Sutton, 2017), which has
typically been preserved since the seminal work in this field
of Mnih et al. (2013; 2015). We begin by identifying that
several such hyperparameters, such as buffer capacity and
rate of data throughput, are interlinked in the manner that
they affect experience replay, modifying both the amount
of data available to an agent and the typical age of that
data. This motivates a comprehensive set of experiments to
understand the relative effects of modifying each property
independently. We then make the surprising discovery that
these effects depend critically on the presence of a partic-
ular algorithmic component, n-step returns, which has not
previously been linked to experience replay. We conclude
by examining several hypotheses to uncover why this link
exists.

2. Background
We consider a Markov decision process (S,A, P,R, γ), and
denote the sequence of states, actions, and rewards expe-
rienced by an agent by (St)t≥0, (At)t≥0, and (Rt)t≥0, re-
spectively. The central task of reinforcement learning is to
find a policy π : S → ∆A that maximizes the expected
return

Qπ(s, a) = Eπ

∑
t≥0

γtRt

∣∣∣∣∣∣S0 = s,A0 = a

 ,
for each initial state-action pair (s, a) ∈ S ×A. This prob-
lem is well studied, and a wide range of methods based
on value iteration, policy iteration, and policy gradients
have been built up over the course of decades (Bellman,
1957; Puterman, 1994; Bertsekas & Tsitsiklis, 1996; Kael-
bling et al., 1996; Szepesvári, 2010; Sutton & Barto, 2018;
Franois-Lavet et al., 2018). A prototypical method based on
value iteration is Q-learning (Watkins & Dayan, 1992); in its
most basic form, it maintains an estimate Q : S ×A → R
of the optimal value function, and given a sequence of tran-
sition tuples (st, at, rt, st+1)t≥0, updatesQ(st, at) towards

ar
X

iv
:2

00
7.

06
70

0v
1 

 [
cs

.L
G

] 
 1

3 
Ju

l 2
02

0



Revisiting Fundamentals of Experience Replay

the target rt + γmaxa∈AQ(st+1, a), for each t ≥ 0.

2.1. Deep reinforcement learning

In recent years, the field of deep reinforcement learning
has sought to combine the classical reinforcement learning
algorithms mentioned above with modern techniques in ma-
chine learning to obtain scalable learning algorithms. Deep
Q-Networks (DQN) (Mnih et al., 2015) combine Q-learning
with neural network function approximation and experience
replay (Lin, 1992) to yield a scalable reinforcement learn-
ing algorithm that achieves superhuman performance on a
range of games in the Arcade Learning Environment (Belle-
mare et al., 2013). Many further approaches have developed
since, which like DQN can be understood as comprising
three fundamental units:

(i) a function approximation architecture;
(ii) a learning algorithm;

(iii) a mechanism for generating training data.

A range of innovations in all three areas have been developed
since the introduction of the original DQN algorithm. A
limited selection of these include architectures based on
duelling heads (Wang et al., 2015) and various forms of
recurrence (Hausknecht & Stone, 2015; Kapturowski et al.,
2019), learning algorithms using auxiliary tasks (Jaderberg
et al., 2016; Fedus et al., 2019), distributional variants of RL
(Bellemare et al., 2017; Dabney et al., 2018), and the use of
prioritisation in sampling from experience replay (Schaul
et al., 2015).

A notable agent combining several such innovations is Rain-
bow (Hessel et al., 2018). An open-source implementation
based on this agent is available in Dopamine (Castro et al.,
2018), which has four main differences relative to the origi-
nal DQN agent:

• Prioritized Experience Replay (PER) (Schaul et al.,
2015): A scheme for sampling non-uniformly from the
replay buffer that favors transitions with a high temporal-
difference (TD) error. In contast, DQN uniformly sam-
ples experience from the replay buffer.

• n-step returns: Rather than training the action-value
estimate Q(st, at) on the basis of the single-step tempo-
ral difference error rt + γmaxaQ(st+1, a)−Q(st, at),
an n-step target

∑n−1
k=0 γ

krt+k+γn maxaQ(st+n, a)−
Q(st, at) is used, with intermediate actions generated
according to a behavior policy µ.

• Adam optimizer (Kingma & Ba, 2014): An improved
first-order gradient optimizer which normalizes for first
and second gradient moments, in contrast to the RM-
SProp optimizer used by DQN.

• C51 (Bellemare et al., 2017): A distributional RL algo-
rithm that trains an agent to make a series of predictions
about the distribution of possible future returns, rather

than solely estimating the scalar expected return.

The Dopamine Rainbow agent differs from that of Hes-
sel et al. (2018) by not including Double DQN updates
(Van Hasselt et al., 2016), dueling heads (Wang et al., 2015),
or noisy networks (Fortunato et al., 2018). For complete-
ness, we provide a discussion of the details around these
algorithmic adjustments in the Appendix.

2.2. Experience replay

A critical component of DQN-style algorithms is experience
replay (Lin, 1992). The experience replay is a fixed-size
buffer that holds the most recent transitions collected by
the policy. It greatly improves the sample efficiency of the
algorithm by enabling data to be reused multiple times for
training, instead of throwing away data immediately after
collection, and also improves the stability of the network
during training.

The experience replay is typically implemented as a circular
buffer, where the oldest transition in the buffer is removed
to make room for a transition that was just collected. Tran-
sitions are sampled from the buffer at fixed intervals for
use in training. The most basic sampling strategy used is
uniform sampling, whereby each transition in the buffer is
sampled with equal probability. Other sampling strategies,
such as prioritized experience replay (Schaul et al., 2015),
can be used instead of uniform sampling. While this is the
most common implementation, other variations, such as a
distributed experience replay buffer (Horgan et al., 2018),
can be used.

Mnih et al. (2015) set the experience replay size to hold 1M
transitions. This setting is often preserved in works building
off DQN (Hessel et al., 2018). In this work, we hold other
components of the algorithm fixed and study the effects of
modifying various aspects of experience replay.

2.3. Related work

While the three principal aspects of DQN-based agents listed
in Section 2.1 have individually received much attention,
comparatively little effort has been spent on investigating
the interactions between design choices across these areas;
notable excamples include the original Rainbow work (Hes-
sel et al., 2018), as well as more recent work focused on
λ-returns and replay (Daley & Amato, 2019). The principal
aim of this work is to improve our understanding of the
relationship between data generation mechanisms, in the
form of experience replay, and learning algorithms.

Zhang & Sutton (2017) study the effects of replay buffer
size on performance of agents of varying complexity, noting
hyperparameters of the replay buffer such as this are not
well understood generally, partly as a result of the complexi-
ties of modern learning systems. They find that both smaller



Revisiting Fundamentals of Experience Replay

and larger replay buffers are detrimental to performance
on a set three tasks: a gridworld, LUNAR LANDER (Catto,
2011) and PONG from the Arcade Learning Environment
(Bellemare et al., 2013). Liu & Zou (2018) also study the
effects of replay buffer size and minibatch size on learning
performance. Fu et al. (2019) report that agent performance
is sensitive to the number of environment steps taken per
gradient step, with too small or large a ratio also hindering
performance. van Hasselt et al. (2019) vary this ratio in com-
bination with batch sizes to obtain a more sample-efficient
version of Rainbow. Beyond direct manipulation of these
properties of the buffer, improving and understanding expe-
rience replay algorithms remains an active area of research
(Pan et al., 2018; Schlegel et al., 2019; Zha et al., 2019;
Novati & Koumoutsakos, 2019; Sun et al., 2020; Lee et al.,
2019).

3. Disentangling experience replay
We conduct a detailed study of the ways in which the type
of data present in replay affects learning. In earlier work,
Zhang & Sutton (2017) studied the effects of increasing the
size of the replay buffer of DQN. We note that in addition
to increasing the diversity of samples available to the agent
at any moment, a larger replay buffer also typically contains
more off-policy data, since data from older policies remain
in the buffer for longer. The behavior of agents as we vary
the rate at which data enters and leaves the buffer is another
factor of variation which is desirable to understand, as this
is commonly exploited in distributed agents such as R2D2
(Kapturowski et al., 2019). Our aim will be to disentangle,
as far as is possible, these separate modalities. To make
these ideas precise, we begin by introducing several formal
definitions for the properties of replay that we may wish
to isolate, in order to get a better understanding behind the
interaction of replay and learning.

3.1. Independent factors of control

We first disentangle two properties affected when modifying
the buffer size.

Definition 1. The replay capacity is the total number of
transitions stored in the buffer.

By definition, the replay capacity is increased when the
buffer size is increased. A larger replay capacity will typi-
cally result in a larger state-action coverage. For example,
an ε-greedy policy samples actions randomly with probabil-
ity ε, so the total number of random actions in the replay
buffer with capacity N will be εN in expectation.

Definition 2. The age of a transition stored in replay is
defined to be the number of gradient steps taken by the
learner since the transition was generated. The age of the
oldest policy represented in a replay buffer is the age of the

Replay Capacity

100,000 316,228 1,000,000 3,162,278 10,000,000

Oldest 
Policy

25,000,000 250.000 79.057 25.000 7.906 2.500

2,500,000 25.000 7.906 2.500 0.791 0.250

250,000 2.500 0.791 0.250 0.079 0.025

25,000 0.250 0.079 0.025 0.008 0.003

Figure 1. Replay ratio varies with replay capacity and the age
of the oldest policy. The replay ratio for controlling different
replay capacities (rows) and different ages of the oldest policy
(columns). Bold values of 0.25 are the default replay ratio (one
gradient update per four actions) used by Mnih et al. (2015).

oldest transition in the buffer.

The buffer size directly affects the age of the oldest policy.
This quantity can be loosely viewed as a proxy of the degree
of off-policyness of transitions in the buffer; intuitively, the
older a policy is, the more likely it is to be different from
the current policy. However, note that this intuition does not
hold for all cases; e.g., if the acting policy cycles through a
small set of policies.

Whenever the replay buffer size is increased, both the replay
capacity and the age of the oldest policy increase, and the
relationship between these two independent factors can be
captured by another quantity, the replay ratio.

Definition 3. The replay ratio is the number of gradient
updates per environment transition.

The replay ratio can be viewed as a measure of the rela-
tive frequency the agent is learning on existing data versus
acquiring new experience. The replay ratio stays constant
when the buffer size is increased because the replay capacity
and the age of the oldest policy both increase. However,
if one of the two factors is independently modulated, the
replay ratio will change. In particular, when the oldest pol-
icy is held fixed, increasing the replay capacity requires
more transitions per policy, which decreases the replay ratio.
When the replay capacity is held fixed, decreasing the age of
the oldest policy requires more transitions per policy, which
also decreases the replay ratio.

In the hyperparameters established in (Mnih et al., 2015),
the policy is updated every 4 environment steps collected,
resulting in a replay ratio of 0.25. Therefore, for a replay
capacity of 1M transitions, the oldest policy captured in
the replay buffer is 250k gradient updates old. Figure 1
computes the resultant replay ratio when varying either the
replay capacity or the age of the oldest policy. Quantities
similar to the replay ratio have also been identified as im-
portant hyperparameters in several recent works on deep
RL methods (Wang et al., 2016; Kapturowski et al., 2019;
Hamrick et al., 2020; Lin & Zhou, 2020).



Revisiting Fundamentals of Experience Replay

Replay Capacity

100,000 316,228 1,000,000 3,162,278 10,000,000

Oldest 
Policy

25,000,000 -74.9 -76.6 -77.4 -72.1 -54.6

2,500,000 -78.1 -73.9 -56.8 -16.7 28.7

250,000 -70.0 -57.4 0.0 13.0 18.3

25,000 -31.9 12.4 16.9 -- --

Figure 2. Performance consistently improves with increased
replay capacity and generally improves with reducing the age
of the oldest policy. Median percentage improvement over the
Rainbow baseline when varying the replay capacity and age of the
oldest policy in Rainbow on a 14 game subset of Atari. We do not
run the two cells in the bottom-right because they are extremely
expensive due to the need to collect a large number of transitions
per policy.

3.2. Experiments

We conduct experiments on the commonly-used Atari Ar-
cade Learning Environment (Bellemare et al., 2013) with
sticky actions (Machado et al., 2018). We focus on a subset
of 14 games in order to reduce the computational burden of
our experiments, as we aim to benchmark a sizeable grid of
values for the two factors. The subset is chosen in a manner
meant to reflect the diversity of environments across games
(e.g., ensuring we have sparse, hard exploration games such
as MONTEZUMA’S REVENGE). For each game, we run
3 different random seeds. We use Rainbow (Hessel et al.,
2018) implemented in Dopamine (Castro et al., 2018) as our
base algorithm in this study due to its strong performance
among existing Q-learning agents.

In these experiments, we fix the total number of gradient
updates and the batch size per gradient update to the settings
used by Rainbow, meaning that all agents train on the same
number of total transitions, although environment frames
generated may vary due to controlling for the oldest policy
in replay. Rainbow uses a replay capacity of 1M and an
oldest policy of 250k, corresponding to a replay ratio of
0.25. We assess the cross product of 5 settings of the replay
capacity (from 0.1M to 10M) and 4 settings of the oldest
policy (from 25k to 25M), but exclude the two settings
with the lowest replay ratio as they are computationally
impractical due to requiring a large number of transitions
per policy. The replay ratio of each setting is shown in
Figure 1 and the Rainbow results in Figure 2. Several trends
are apparent.

Increasing replay capacity improves performance.
While fixing the oldest policy, performance improves with
higher replay capacity (rows in Figure 2). This general
trend holds regardless of the particular value of oldest pol-
icy, though the magnitude of improvement is dependent on
the setting of oldest policy. It may be that larger replay ca-
pacities improves the value function estimates due to having

a larger state-action coverage, which can lower the chance
of overfitting to a small subset of state-actions.

Reducing the oldest policy improves performance.
When fixing the replay capacity, performance tends to im-
prove as the age of the oldest policy decreases (columns in
Figure 2). We visualize the training curves for three settings
on three games in Figure 3. Using the heuristic that the
age of oldest policy is a proxy for off-policyness, this result
suggests that learning from more on-policy data may im-
prove performance. As the agent improves over the course
of training, it spends more time in higher quality (as mea-
sured by return) regions of the environment. Learning to
better estimate the returns of high quality regions can lead
to further gains.

(a) ASTERIX

(b) SEAQUEST

(c) PRIVATEEYE

Figure 3. Performance generally improves when trained on
data from more recent policies. Training curves for three games
each over a sweep of three oldest policy parameters (2.5e5, 2.5e6
and 2.5e7). Performance generally improves significantly with
reduced oldest policies except in sparse-reward games such as
PRIVATEEYE.



Revisiting Fundamentals of Experience Replay

However, an exception to this trend is seen in the 10M replay
capacity setting where the performance drops when moving
from an age of 2.5M to 250k. This aberration is explained
by a drop in scores of two specific games (see Figure 4),
MONTEZUMA’S REVENGE and PRIVATEEYE, which are
considered sparse-reward hard-exploration environments
(Bellemare et al., 2016). Agents that only sample from the
newest policies do not seem to be able to find the sparse
reward (see Figure 3(c)).

Figure 4. Sparse-reward games benefit from data generated by
older policies. Median relative improvement of a Rainbow agent
with a 10M replay capacity and 250k oldest policy compared to one
with 2.5M oldest policy. Decreasing the age of the oldest policy
improves performance on most games. However, performance
drops significantly on the two hard exploration games, which
bucks the trend that data from newer policies is better.

Increasing buffer size with a fixed replay ratio has vary-
ing improvements. When the replay ratio is fixed while
the buffer size is modified, there is an interplay between
the improvements caused by increasing the replay capacity
and the deterioration caused by having older policies in the
buffer. The magnitude of both effects depends on the par-
ticular settings of these quantities. Generally, as the age of
the oldest policy increases, the benefits from increasing the
replay capacity are not as large.

3.3. Generalizing to other agents

The experiments in the previous subsection are conducted
using the Dopamine Rainbow algorithm but we now test
whether experience replay behaves similarly in other Q-
learning variants. In particular, we test if increases in the
replay capacity improve performance with the original DQN
algorithm (Mnih et al., 2015).

We maintain the default Dopamine hyperparameters (Castro
et al., 2018) specifically tuned for DQN and increase the
replay capacity from 1M to 10M. We consider two experi-
mental variants: fixing either the replay ratio or the oldest
policy. Fixing the replay ratio corresponds to the standard
setting of increasing the buffer size hyperparameter. Fixing
the oldest policy requires adjusting the replay ratio so that
the replay buffer always contains policies within a certain

number of gradient updates. The results are presented in
Table 1.

Table 1. DQN does not improve with larger replay capacities,
unlike Rainbow. Relative improvements of increasing replay
capacity from 1M to 10M for DQN and Rainbow. Relative im-
provements are computed with respect to performance of the cor-
responding agent with a 1M replay capacity. Either the replay
ratio or the oldest policy is held fixed when increasing the replay
capacity.

Agent Fixed replay ratio Fixed oldest policy

DQN +0.1% -0.4%
Rainbow +28.7% +18.3%

Surprisingly, providing a DQN agent with an order of magni-
tude larger memory confers no benefit regardless of whether
the replay ratio or the oldest policy is held fixed. These
results stand in contrast to the dynamics of the Rainbow
agent which demonstrates consistent improvements with
increased replay capacity. We also note the fixed replay
ratio result disagrees with the conclusion in Zhang & Sutton
(2017) that larger replay capacity is detrimental – we instead
observe no material performance change.

This result calls into question which differences between
these two value-based algorithms are driving the distinct
responses to an increased replay buffer size. In the next
section, we perform a large scale study to determine which
algorithmic components enable Rainbow to take advantage
of a larger replay capacity.

4. What components enable improving with a
larger replay capacity?

As described in Section 2.1, the Dopamine Rainbow agent
is a DQN agent with four additional components: priori-
tized experience replay (Schaul et al., 2015), n-step returns,
Adam (Kingma & Ba, 2014), and C51 (Bellemare et al.,
2017). We therefore seek to attribute the performance dif-
ference under larger replay capacities to one or more of
these four components. To do so, we study agents built from
a variety of subsets of components, and measure whether
these variant agents improve when increasing the replay ca-
pacity. In these studies we specifically measure the relative
improvement upon increasing the replay capacity, not which
variant achieves the highest absolute return.

4.1. Additive and ablative experiments

We begin with an additive study where we add a single
component of Rainbow to the DQN algorithm, resulting
in four agent variations. We independently compute the
relative performance difference when increasing the replay
capacity from 1M to 10M for each variant. When increasing



Revisiting Fundamentals of Experience Replay

the replay capacity, we fix the replay ratio, and revisit the
case of fixing the oldest policy later in the section. We
evaluate across a set of 20 games that is a superset of the 14
games used in the previous section. The results are shown
in Figure 5.

Figure 5. Adding n-step to DQN enables improvements with
larger replay capacities. Median relative improvement of DQN
additive variants when increasing replay capacity from 1M to
10M. Bars represent 50% percentile improvement and the lower
and upper bound of the error line is denoted by 25% and 75%
percentiles, respectively.

The only additive variant that materially improves with
larger replay capacity is the DQN agent with n-step returns.
From this we hypothesize that n-step returns uniquely con-
fer a benefit with larger replay capacity. As a test of this
hypothesis, removing the n-step returns from the Rainbow
agent should inhibit this ablative variant from improving
with a larger replay capacity. Furthermore, for n-step returns
to be the sole influential component, the ablative versions
of the other three components (PER, Adam, C51) must
still show improvements with a larger replay capacity. We
present the result of this ablative Rainbow experiment in
Figure 6.

As predicted, a Rainbow agent stripped of n-step returns
does not benefit with larger replay capacity, while the Rain-
bow agents stripped of other components still improve.
These results suggest that n-step returns are uniquely im-
portant in determining whether a Q-learning algorithm can
improve with a larger replay capacity. Another surpris-
ing finding is that prioritized experience replay does not
significantly affect the performance of agents with larger
memories; intuitively, one might expect prioritized experi-
ence replay to be useful in selecting relevant experience for
the learner as the replay buffer size grows. Further detail at
the per-game level is provided in Appendix B.

As one final control, we check that DQN with n-step returns
still improves with larger replay capacity if the oldest policy
is held fixed, rather than the replay ratio being held fixed.
Figure 7 shows that the DQN + n-step algorithm is able to

Figure 6. Removing n-step from Rainbow prevents improve-
ments with larger replay capacities. Median relative improve-
ment of Rainbow ablative variants when increasing replay capacity
from 1M to 10M. Bars represent 50% percentile improvement and
the lower and upper bound of the error line is denoted by 25% and
75% percentiles, respectively.

Figure 7. DQN + n-step improve with larger replay capacity
if oldest policy is fixed. 25th, 50th, and 75th percentile relative
improvement of DQN and DQN + n-step when increasing replay
capacity while the oldest policy is fixed at 250k.

consistently improve when increasing the replay capacity
from the highly tuned default of 1M while the standard
DQN does not. When given less data, DQN with n-step can
perform worse, an observation that we revisit in Section 5.2.

Taken together, these results suggest that n-step is a critical
factor for taking advantage of larger replay sizes. This is
unexpected. Uncorrected n-step returns are not theoretically
justified for off-policy data because they do not correct for
differences between the behavior and target policies, but
they are still used due to convenience and their empirical
benefits. The experiments show that extending this theoreti-
cally unprincipled approach into a regime where issues may
be further exacerbated1 is essential for performance.

1Larger buffers under a fixed replay ratio will contain data from
older policies which potentially increases the discrepancy between
the old behavior and current agent.



Revisiting Fundamentals of Experience Replay

4.2. n-step for massive replay capacities

These results suggest that n-step returns should be used
when increasing replay capacity. However, our previous
results only consider replay capacities up to 10M, which is
a fraction of the 200M total transitions collected over the
entire course of training. It may be the case that n-step
is no longer as beneficial, or even harmful, as the replay
capacity increases. This degradation may happen because
when fixing the replay ratio, which is the most common
setting used in practice, the age of the oldest policy will
increase alongside the replay capacity. As demonstrated in
Section 3.2, the exact settings of each factor controls the
magnitude of degradation caused by an increase in oldest
policy and the magnitude of improvement caused by an
increase in replay capacity. Furthermore, the uncorrected
nature of n-step returns may hurt performance in regimes
of high off-policyness.

Therefore to test the limits of the hypothesis that n-step
returns are useful in large capacity regimes with high levels
of off-policyness, we turn to the logical extreme — offline
deep reinforcement learning (Agarwal et al., 2020). In of-
fline reinforcement learning, a learner is trained only using
data collected from another agent. All data from the original
agent is preserved unlike the typical case in online reinforce-
ment learning where older experience is evicted from the
replay buffer. This also represents a worst-case scenario
with respect to off-policyness because the learner cannot in-
teract with the environment to correct its estimates. We use
the settings of Agarwal et al. (2020) where for each game
in the same subset of games used in previous experiments,
a DQN agent collects a data set of 200M frames which are
used to train another agent. We train two variants of DQN
with n-step returns, and compare each setting of n against
the online DQN agent used to generate the data. The results
are presented in Figure 8.

Figure 8. Agents improve with n-step in the offline batch RL
setting. 25th, 50th, and 75th percentile relative improvement of
each offline agent over the DQN used to gather the training data.
Using n > 1 improves performance.

Even in this challenging task, using n > 1 consistently im-
proves performance for both agents. The shape of the curve
when varying n depends on the particular agent that is used,
but setting n = 3, which is the value used in all previous
experiments, performs well. These results further validate
the hypothesis that n-step is beneficial when increasing the
replay capacity.

5. Why is n-step the enabling factor?
In the previous section, we showed empirically that n-step
returns modulates whether DQN can take advantage of
larger replay capacities. In this section, we attempt to un-
cover the mechanism that links these two seemingly un-
related components together. In the hypotheses that we
evaluate, we find that one plays a partial role in the linkage
between n-step and replay capacity.

5.1. Deadening the deadly triad

Function approximation of Q-values, bootstrapping, and
off-policy learning have been identified as the deadly triad
(Sutton & Barto, 2018; van Hasselt et al., 2018) of prop-
erties that, when combined, can negatively affect learn-
ing or even cause divergence. van Hasselt et al. (2018)
suggest that n-step returns work well because they make
the magnitude of the bootstrap smaller, making divergence
less likely. Recall that the n-step target is

∑n−1
k=0 γ

krt+k +
γn maxaQ(st+n, a) where γ ∈ [0, 1) is the discount factor
and γn is the contraction factor. The smaller the contraction
factor, the less impact the bootstrap maxaQ(st+n, a) has
on the target.

When the replay capacity is increased while keeping the re-
play ratio fixed, the transitions in the buffer come from older
policies, which may increase the off-policyness of the data
and, according to the deadly triad, destabilize training. Thus,
one may hypothesize that the supposed stability offered by
n-step is required to counter the increased off-policyness
produced by a larger replay capacity.

We test this hypothesis by applying a standard 1-step update
to DQN with the same contractive factor as an n-step update:
rt+γn maxaQ(st+1, a); this is equivalent to simply reduc-
ing the discount factor, although we note that it also changes
the fixed point of the algorithm. If the contractive factor is
the key enabler, using DQN with the modified update should
be able to improve with increased replay capacity. How-
ever, we find empirically that there is no improvement with
an increased replay capacity when using the smaller con-
tractive factor in a 1-step update. Furthermore, even if the
oldest policy is fixed, which should control off-policyness,
DQN does not improve with a larger capacity (see Figure 7).
These results suggests that the hypothesis that the stability
improvements of n-step that arise from the lower contrac-



Revisiting Fundamentals of Experience Replay

tion rate do not explain the importance of n-step in taking
advantage of larger replay capacities.

5.2. Variance reduction

One can view n-step returns as interpolating between
estimating Monte Carlo (MC) targets,

∑T
k=0 γ

krt+k,
and single-step temporal difference (TD) targets, rt +
γmaxaQ(st+1, a). It balances between the low bias but
high variance of MC targets, and the low variance but high
bias of single-step TD targets. The variance of MC targets
comes from stochasticity of rewards and environmental dy-
namics, whereas the bias of single-step TD targets comes
from using an imperfect bootstrap to estimate future returns.

An increase in replay capacity might provide a means of
mitigating the additional variance of n-step returns, relative
to single-step TD targets. The increased variance of the n-
step target increases the learning algorithm’s sensitivity to
changes in the replay buffer data. Whilst an increased replay
capacity will not affect the variance of the learner’s target
ascribable to minibatch sampling from a fixed replay buffer,
it will affect the diversity of transitions which the buffer con-
tains. Thus, in scenarios where the data-generating policy is
rapidly changing, for example, a small replay buffer may un-
dergo wild shifts in the type of data in contains, which may
have a particularly pronounced effect on higher variance
n-step methods. In contrast, a larger buffer may moderate
the effects of fluctuations in the data-generating policy.

This brief analysis provides a testable hypothesis: in an
environment with less variance in returns, the gains from
increasing the replay capacity should be reduced. The vari-
ance of returns in the Atari domain can be reduced by turn-
ing off sticky actions. Sticky actions (Machado et al., 2018)
cause the previously taken action to be repeated with some
probability – increasing the stochasticity of the transition
dynamics – which in turn increases the variance of returns.

We test this hypothesis by running 1-,3-,5- and 7-step ver-
sions of DQN on the ALE with and without sticky actions,
and report results in Figure 9. As predicted by the hypoth-
esis, the relative improvements in the absence of sticky
actions are consistently less than than the relative improve-
ments with sticky actions present. Furthermore, the differ-
ence of improvements between sticky actions and no sticky
actions increases with n, which is predicted by the hypoth-
esis given that variance also increases with n. However,
even when removing stochasticity, using n-step returns still
shows improvements with increased capacity, indicating
that whilst there is some evidence for the hypothesis pre-
sented here, it can only play a partial part in explaining the
effectiveness of n-step updates and their ability to make use
of larger buffers.

Figure 9. Turning off sticky actions reduces gains from increas-
ing replay capacity. 25th, 50th, and 75th percentile relative im-
provements from increasing the replay capacity from 1M to 10M
for DQN agents with n-step when toggling sticky actions. Larger
n benefit more from increased replay capacity, but agents trained
in an environment without sticky actions benefit less than agents
trained in an environment with sticky actions.

5.3. Further multi-step and off-policy methods

Our investigation has focused specifically on the effects
of n-step returns, as one of the key aspects of the Rain-
bow agent. These findings naturally open further questions
as to the interaction between experience replay and more
general classes of return estimators based on multi-step,
off-policy data, such as variants of Q(λ) (Watkins, 1989;
Peng & Williams, 1994; Sutton et al., 2014; Harutyunyan
et al., 2016), TreeBackup (Precup et al., 2000) and Retrace
(Munos et al., 2016), which we believe will be interesting
topics for future work.

6. Discussion
We have conducted an in-depth study of how replay affects
performance in value-based deep reinforcement learning
agents. The summary of our contributions are:

(a) Disentangling the effects of replay capacity and old-
est policy, finding that increasing replay capacity and
decreasing the age of the oldest policy improves per-
formance;

(b) Discovering that n-step returns are uniquely critical
for taking advantage of an increased replay capacity;

(c) Benchmarking n-step returns in the massive replay
capacity regime, and finding that it still provides gains
despite the substantial off-policyness of the data;

(d) Investigating the connection between n-step returns
and experience replay, and finding that increasing the
replay capacity can help mitigate the variance of n-
step targets, which partially explains the improved
performance.

Taking a step back, this can be interpreted as an investi-
gation into how two of the principal aspects of deep RL



Revisiting Fundamentals of Experience Replay

agents described in Section 2.1, namely learning algorithms
and data generating mechanisms, interact with one another.
These two aspects are inextricably linked; the data on which
an algorithm is trained clearly affects what is learned, and
correspondingly what is learned affects how the agent inter-
acts with the environment, and thus what data is generated.
We highlight several fundamental properties of the data gen-
erating distribution: (a) Degree of on-policyness (how close
is the data-generating distribution to the current policy be-
ing evaluated?); (b) State-space coverage; (c) Correlation
between transitions; (d) Cardinality of distribution support.

Practically, these aspects may be difficult to control indepen-
dently, and the typical algorithmic adjustments we can make
affect several of these simultaneously; two examples of such
adjustments are the replay capacity and replay ratio inves-
tigated in this paper. We emphasize that these practically
controllable aspects of an agent may also have differing ef-
fects on the data distribution itself depending on the precise
architecture of the agent; for example, in a distributed agent
such as R2D2 (Kapturowski et al., 2019), decreasing the
replay ratio by increasing the number of actors will lead to
changes in both (a) and (c) above, whilst in a single-actor
agent such as DQN, changing the replay ratio by altering
the number of environment steps per gradient step will also
change (b).

These issues highlight the entanglement that exists between
these different properties of the data-generating mechanism
at the level of practical algorithmic adjustments, and moti-
vates further study into how these properties can be disen-
tangled. This direction of research is particularly important
with regard to obtaining agents which can effortlessly scale
with increased availability of data. More broadly, this work
opens up many questions about the interaction of replay and
other agent components, the importance of n-step returns
in deep RL, and off-policy learning, which we expect to be
interesting subjects for future work.

Acknowledgements
We’d like to thank Carles Gelada and Jacob Buckman for
many lively discussions trying to understand early empir-
ical results. In addition, we thank Dale Schuurmans for
theoretical insights and Sylvain Gelly for advice on conduct-
ing a hard-nosed scientific study. We had several helpful
discussions with the Google Brain RL team, in particular,
Dibya Ghosh and Marlos Machado. Finally, we would like
to thanks Georg Ostrovski for extensive comments on an
earlier draft of this work.

References
Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-

mistic perspective on offline reinforcement learning. In-

ternational Conference on Machine Learning (ICML),
2020.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Neural Information
Processing Systems (NIPS), 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The Arcade Learning Environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A distri-
butional perspective on reinforcement learning. In In-
ternational Conference on Machine Learning (ICML),
2017.

Bellman, R. Dynamic Programming. Dover Publications,
1957.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1st edition, 1996. ISBN
1886529108.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A research framework for deep
reinforcement learning. arXiv, 2018.

Catto, E. Box2D: A 2D physics engine for games, 2011.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile
regression. In AAAI Conference on Artificial Intelligence,
2018.

Daley, B. and Amato, C. Reconciling λ-returns with experi-
ence replay. In Neural Information Processing Systems
(NeurIPS), 2019.

Fedus, W., Gelada, C., Bengio, Y., Bellemare, M. G., and
Larochelle, H. Hyperbolic discounting and learning over
multiple horizons. arXiv, 2019.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., Blundell, C., and Legg, S. Noisy networks
for exploration. In International Conference on Learning
Representations (ICLR), 2018.

Franois-Lavet, V., Henderson, P., Islam, R., Bellemare,
M. G., and Pineau, J. An introduction to deep rein-
forcement learning. Foundations and Trends in Machine
Learning, 11(3-4):219–354, 2018.

Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing bot-
tlenecks in deep Q-learning algorithms. In International
Conference on Machine Learning (ICML), 2019.



Revisiting Fundamentals of Experience Replay

Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Pfaff, T.,
Weber, T., Buesing, L., and Battaglia, P. W. Combining
Q-learning and search with amortized value estimates. In
International Conference on Learning Representations
(ICLR), 2020.

Harutyunyan, A., Bellemare, M. G., Stepleton, T., and
Munos, R. Q(λ) with off-policy corrections. In Interna-
tional Conference on Algorithmic Learning Theory (ALT),
2016.

Hausknecht, M. and Stone, P. Deep recurrent Q-learning
for partially observable MDPs. In AAAI Fall Symposium
Series, 2015.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI Conference on Artificial
Intelligence, 2018.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., Van Hasselt, H., and Silver, D. Distributed priori-
tized experience replay. In International Conference on
Learning Representations (ICLR), 2018.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks. In Inter-
national Conference on Learning Representations (ICLR),
2016.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. Re-
inforcement learning: A survey. Journal of artificial
intelligence research, 4:237–285, 1996.

Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., and
Munos, R. Recurrent experience replay in distributed
reinforcement learning. In International Conference on
Learning Representations (ICLR), 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations (ICLR), 2014.

Lee, S. Y., Sungik, C., and Chung, S.-Y. Sample-
efficient deep reinforcement learning via episodic back-
ward update. In Neural Information Processing Systems
(NeurIPS), 2019.

Lin, K. and Zhou, J. Ranking policy gradient. In Interna-
tional Conference on Learning Representations (ICLR),
2020.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3-4):293–321, 1992.

Liu, R. and Zou, J. The effects of memory replay in re-
inforcement learning. In 2018 56th Annual Allerton
Conference on Communication, Control, and Comput-
ing (Allerton), pp. 478–485. IEEE, 2018.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
Arcade Learning Environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with deep reinforcement learning. arXiv, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Neural Information Processing Systems (NIPS), 2016.

Novati, G. and Koumoutsakos, P. Remember and forget for
experience replay. In Remember and Forget for Experi-
ence Replay, 2019.

Pan, Y., Zaheer, M., White, A., Patterson, A., and White, M.
Organizing experience: A deeper look at replay mech-
anisms for sample-based planning in continuous state
domains. In International Joint Conference on Artificial
Intelligence (IJCAI), 2018.

Peng, J. and Williams, R. J. Incremental multi-step q-
learning. In International Conference on Machine Learn-
ing (ICML), 1994.

Precup, D., Sutton, R. S., and Singh, S. P. Eligibility traces
for off-policy policy evaluation. In International Confer-
ence on Machine Learning (ICML), 2000.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., USA, 1st edition, 1994. ISBN 0471619779.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prior-
itized experience replay. International Conference on
Learning Representations (ICLR), 2015.

Schlegel, M., Chung, W., Graves, D., Qian, J., and White,
M. Importance resampling for off-policy prediction. In
Neural Information Processing Systems (NeurIPS), 2019.

Sun, P., Zhou, W., and Li, H. Attentive experience replay.
In AAAI Conference on Artificial Intelligence, 2020.



Revisiting Fundamentals of Experience Replay

Sutton, R., Mahmood, A. R., Precup, D., and Hasselt, H.
A new q (λ) with interim forward view and monte carlo
equivalence. In International Conference on Machine
Learning (ICML), 2014.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Szepesvári, C. Algorithms for reinforcement learning. Mor-
gan & Claypool Publishers, 2010.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In AAAI Confer-
ence on Artificial Intelligence, 2016.

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. In Deep Reinforcement Learning Workshop,
NeurIPS, 2018.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to
use parametric models in reinforcement learning? In
Neural Information Processing Systems (NeurIPS), 2019.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot,
M., and De Freitas, N. Dueling network architectures for
deep reinforcement learning. In International Conference
on Machine Learning (ICML), 2015.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. Sample efficient
actor-critic with experience replay. In International Con-
ference on Learning Representations (ICLR), 2016.

Watkins, C. Learning from delayed rewards. PhD thesis,
University of Cambridge, 1989.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279–292, 1992.

Zha, D., Lai, K.-H., Zhou, K., and Hu, X. Experience
replay optimization. In International Joint Conference
on Artificial Intelligence (IJCAI), 2019.

Zhang, S. and Sutton, R. S. A deeper look at experience
replay. Deep Reinforcement Learning Symposium, NIPS,
2017.



Revisiting Fundamentals of Experience Replay

APPENDICES: Revisiting Fundamentals of Experience Replay

A. Experimental details
A.1. The Dopamine Rainbow agent

Our empirical investigations in this paper are based on the Dopamine Rainbow agent (Castro et al., 2018). This is an open
source implementation of the original agent (Hessel et al., 2018), but makes several simplifying design choices. The original
agent augments DQN through the use of (a) a distributional learning objective, (b) multi-step returns, (c) the Adam optimizer,
(d) prioritized replay, (e) double Q-learning, (f) duelling architecture, and (g) noisy networks for exploration. The Dopamine
Rainbow agent uses just the first four of these adjustments, which were identified as the most important aspects of the agent
in the original analysis of Hessel et al. (2018).

A.2. Atari 2600 games used

A 14 game subset was used for the grid measuring the effects of varying replay capacity and oldest policy. A 20 game
subset, which is comprised of the 14 games used for the grid with 6 additional games, was used for all other experiments.

14 game subset: AIR RAID, ASTERIX, BREAKOUT, FREEWAY, GRAVITAR, JAMES BOND, MONTEZUMA’S REVENGE,
MS. PACMAN, PRIVATE EYE, Q*BERT, SEAQUEST, SPACE INVADERS, VENTURE, ZAXXON.

20 game subset: The 14 games above in addition to: ASTEROIDS, BOWLING, DEMON ATTACK, PONG, WIZARD OF
WOR, YARS’ REVENGE.

B. Additive and ablative studies
B.1. DQN additions

We provide game-level granularity on the performance of each supplemented DQN agent in Figure 10.

B.2. Rainbow ablations

We provide game-level granularity on the performance of each ablated Rainbow agent in Figure 11.

C. Error analysis for rainbow grid
We provide an error analysis for each of the elements in Figure 2 (reproduced here as Figure 12) by providing the 25% and
75% percentile improvements for each combination of replay capacity and oldest policy. These results are given in Figure
13.

We present an alternative view of the data using a bootstrap estimation technique. Instead of fixing the seeds for both
the baseline agent and our new agent at each cell, we sample, with replacement, the seeds. We carry out this procedure
repeatedly and report the mean and standard deviations in Figure 14.

D. Replay buffer size
We provide a different perspective on the data from Figure 2 in Figure 15, illustrating a general relationship between replay
ratio and performance improvement. We provide game-level granularity on the performance of Rainbow with varying buffer
sizes in Figure 17. In Figure 16 we also gives results for varying replay buffer size and age of oldest policy for DQN, 3-step
DQN, and Rainbow.

E. Batch RL learning curves
In Figures 18 and 19, we provide learning curves for the batch RL agents described in Section 4.2.



Revisiting Fundamentals of Experience Replay

(a) DQN + 3-step provides a median performance
change of +24.8%.

(b) DQN + PER provides a median performance change
of +1.5%.

(c) DQN + Adam provides a median performance
change of -0.6%.

(d) DQN + C51 provides a median performance change
of -3.0%.

Figure 10. Only DQN with n-step improves with increased capacity. DQN with an additional component results at a per-game level,
measuring performance changes when increasing replay capacity from 1M to 10M.



Revisiting Fundamentals of Experience Replay

(a) The performance difference for a Rainbow agent
without n-step returns when increasing the replay buffer
size from 1M to 10M. We find that the resultant agent
does not benefit from larger replay buffer sizes, re-
porting a median performance decrease of 2.3%. This
implies the importance of n-step returns.

(b) The performance difference for a Rainbow agent
without prioritized experience replay when increasing
the replay buffer size from 1M to 10M. Even without
prioritization, the algorithm still benefits +17.3%.

(c) A Rainbow agent without Adam optimizer has a me-
dian performance increase of +27.0% when the replay
buffer size is increased from 1M to 10M.

(d) The performance difference for a Rainbow agent
without C51 optimizer when increasing the replay buffer
size from 1M to 10M. Median performance change of
+26.6%.

Figure 11. Rainbow ablation results at a per-game level.

Replay Capacity

100,000 316,228 1,000,000 3,162,278 10,000,000

Oldest 
Policy

25,000,000 -74.9 -76.6 -77.4 -72.1 -54.6

2,500,000 -78.1 -73.9 -56.8 -16.7 28.7

250,000 -70.0 -57.4 0.0 13.0 18.3

25,000 -31.9 12.4 16.9 -- --

Figure 12. Performance consistently improves with increased replay capacity and generally improves with reducing the age of
the oldest policy. We reproduce the median percentage improvement over the Rainbow baseline when varying the replay capacity and
age of the oldest policy in Rainbow on a 14 game subset of Atari.

Replay Capacity
100,000 316,228 1,000,000 3,162,278 10,000,000

Oldest 
Policy

25,000,000 -78.2 -77.6 -78.8 -76.6 -58.5

2,500,000 -82.1 -74.2 -64.9 -18.8 26.8

250,000 -74.6 -58.0 -1.0 8.8 13.2

25,000 -37.5 5.6 14.5 -- --

Replay Capacity
100,000 316,228 1,000,000 3,162,278 10,000,000

Oldest 
Policy

25,000,000 -74.1 -76.3 -77.3 -66.6 -53.2

2,500,000 -77.5 -70.1 -56.5 -15.2 29.5

250,000 -67.0 -54.8 1.1 16.2 20.3

25,000 -26.2 18.7 18.6 -- --

Figure 13. 25% (left) and 75% (right) percentile performance improvement over the Rainbow baseline when the replay capacity and age
of the oldest policy in Rainbow on a 14 game subset of Atari.



Revisiting Fundamentals of Experience Replay

Rainbow Average Median Improvements
Replay Capacity

100000 316228 1000000 3162278 10000000

Oldest
Policy

25000000 -74.7 -77 -77.5 -74.6 -57.3

2500000 -79.5 -73.7 -57.5 -17.6 24.7

250000 -70.4 -57.6 0.6 13.8 17.6

25000 -33.2 11 16.7 ----

Rainbow Median Improvement Std. Deviation
Replay Capacity

100000 316228 1000000 3162278 10000000

Oldest
Policy

25000000 0.3 0.5 0.1 2.9 1.4

2500000 1.9 3.5 3.9 1.7 6.5

250000 2.4 0.4 1.9 4.4 2.9

25000 5.6 4.6 2.3 -- --

Figure 14. Bootstrap estimate of variance for each cell. For each cell, rather than using the same 3 seeds for the baseline and the same
3 seeds for each agent of each cell, we consider sampling seeds with replacement. The left grid shows the mean median improvement and
the right grid shows the standard deviation of the median improvement.

Figure 15. Performance improvements increase as replay ratio drops. We plot the results of Figure 2 with respect to the replay ratio,
which shows the general trend.



Revisiting Fundamentals of Experience Replay

DQN Improvement

105 106 107

Replay capacity

80

60

40

20

0

20

Pe
rc
en
ta
ge

im
pr
ov
em

en
t

25000000
2500000
250000
25000

105 106 107

Oldest policy

80

60

40

20

0

20

Pe
rc
en
ta
ge

im
pr
ov
em

en
t 100000

316228
1000000
3162278
10000000

(a) DQN does not show benefits of replay larger than 1M, unless older policies are used

105 106 107

Replay capacity

80

60

40

20

0

20

40

60

Pe
rc
en
ta
ge

im
pr
ov
em

en
t 25000000

2500000
250000
25000

105 106 107

Oldest policy

80

60

40

20

0

20

40

60

Pe
rc
en
ta
ge

im
pr
ov
em

en
t 100000

316228
1000000
3162278
10000000

3-step DQN Improvement

(b) 3-step DQN continues to improve with larger replay capacity

105 106 107

Replay capacity

80

60

40

20

0

20

Pe
rc
en
ta
ge

im
pr
ov
em

en
t 25000000

2500000
250000
25000

105 106 107

Oldest policy

80

60

40

20

0

20

Pe
rc
en
ta
ge

im
pr
ov
em

en
t 100000

316228
1000000
3162278
10000000

Rainbow Improvement

(c) Rainbow continues to improve with larger replay capacity

Figure 16. Performance improves with increased replay capacity and reduced oldest policy age.



Revisiting Fundamentals of Experience Replay

(a) 1M to 100K buffer. Median improvement: -24.6%.

(b) 1M to 316K buffer. Median improvement: -11.8%. (c) 1M to 1M buffer. Median improvement: 1.6%.

(d) 1M to 3M buffer. Median improvement: 30.2%. (e) 1M to 10M buffer. Median improvement: 41.0%.

Figure 17. Rainbow replay buffer effects at a per-game level.



Revisiting Fundamentals of Experience Replay

0 50 100 150 200
Training iterations

0

5000

10000

15000

20000

25000

Av
er

ag
e 

R
et

ur
ns

Air Raid

0 50 100 150 200
Training iterations

0

2000

4000

6000

8000

Asterix

0 50 100 150 200
Training iterations

0

200

400

600

800

1000

1200

Asteroids

0 50 100 150 200
Training iterations

−10

0

10

20

30

40

50

60

Bowling

0 50 100 150 200
Training iterations

0

100

200

300

400

Av
er

ag
e 

R
et

ur
ns

Breakout

0 50 100 150 200
Training iterations

−5000

0

5000

10000

15000

20000

25000

30000

Demon Attack

0 50 100 150 200
Training iterations

0

5

10

15

20

25

30

35
Freeway

0 50 100 150 200
Training iterations

0

200

400

600

800

Gravitar

0 50 100 150 200
Training iterations

0

250

500

750

1000

1250

1500

Av
er

ag
e 

R
et

ur
ns

James Bond

0 50 100 150 200
Training iterations

−1

0

1

2

3

4

Montezuma's Revenge

0 50 100 150 200
Training iterations

0

1000

2000

3000

4000

5000

6000
Ms. Pac-Man

0 50 100 150 200
Training iterations

−20

−10

0

10

20

Pong

0 50 100 150 200
Training iterations

−1000

0

1000

2000

Av
er

ag
e 

R
et

ur
ns

Private Eye

0 50 100 150 200
Training iterations

0

2500

5000

7500

10000

12500

15000

Q*Bert

0 50 100 150 200
Training iterations

0

2500

5000

7500

10000

12500

15000

Seaquest

0 50 100 150 200
Training iterations

0

2000

4000

6000

8000

10000

12000

Space Invaders

0 50 100 150 200
Training iterations

−200

0

200

400

600

800

Av
er

ag
e 

R
et

ur
ns

Venture

0 50 100 150 200
Training iterations

0

2000

4000

6000

8000

Wizard Of Wor

0 50 100 150 200
Training iterations

5000

10000

15000

20000

25000

30000

35000
Yars's Revenge

0 50 100 150 200
Training iterations

0

2000

4000

6000

8000

10000

12000

Zaxxon

Batch DQN(Adam) 1-step Batch DQN(Adam) 2-step Batch DQN(Adam) 3-step Batch DQN(Adam) 5-step Batch DQN(Adam) 7-step

Figure 18. Average evaluation scores across 20 Atari 2600 games of batch DQN (Adam) agent with different n-step horizons trained
offline using the DQN replay dataset (Agarwal et al., 2020). The horizontal line shows the evaluation performance of a fully-trained
online DQN agent. The scores are averaged over 3 runs (shown as traces) and smoothed over a sliding window of 3 iterations and error
bands show standard deviation.



Revisiting Fundamentals of Experience Replay

0 50 100 150 200
Training iterations

0

5000

10000

15000

20000

25000

Av
er

ag
e 

R
et

ur
ns

Air Raid

0 50 100 150 200
Training iterations

0

2000

4000

6000

8000

10000

Asterix

0 50 100 150 200
Training iterations

200

400

600

800

1000

1200

Asteroids

0 50 100 150 200
Training iterations

−10

0

10

20

30

40

50

60

Bowling

0 50 100 150 200
Training iterations

0

100

200

300

400

Av
er

ag
e 

R
et

ur
ns

Breakout

0 50 100 150 200
Training iterations

0

5000

10000

15000

20000
Demon Attack

0 50 100 150 200
Training iterations

0

5

10

15

20

25

30

35
Freeway

0 50 100 150 200
Training iterations

0

200

400

600

800

1000

Gravitar

0 50 100 150 200
Training iterations

0

200

400

600

800

1000

Av
er

ag
e 

R
et

ur
ns

James Bond

0 50 100 150 200
Training iterations

−25

0

25

50

75

100

125

Montezuma's Revenge

0 50 100 150 200
Training iterations

0

1000

2000

3000

4000

Ms. Pac-Man

0 50 100 150 200
Training iterations

−20

−10

0

10

20

Pong

0 50 100 150 200
Training iterations

−2000

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

R
et

ur
ns

Private Eye

0 50 100 150 200
Training iterations

0

2500

5000

7500

10000

12500

15000

Q*Bert

0 50 100 150 200
Training iterations

0

5000

10000

15000

20000

25000

30000

35000
Seaquest

0 50 100 150 200
Training iterations

0

1000

2000

3000

4000

5000

6000

7000

Space Invaders

0 50 100 150 200
Training iterations

0

200

400

600

800

1000

1200

Av
er

ag
e 

R
et

ur
ns

Venture

0 50 100 150 200
Training iterations

0

1000

2000

3000

4000

5000

Wizard Of Wor

0 50 100 150 200
Training iterations

5000

10000

15000

20000

25000

Yars's Revenge

0 50 100 150 200
Training iterations

0

2000

4000

6000

8000

10000

12000
Zaxxon

Batch C51 1-step Batch C51 2-step Batch C51 3-step Batch C51 5-step Batch C51 7-step

Figure 19. Average evaluation scores across 20 Atari 2600 games of a batch C51 agent with different n-step horizons trained offline using
the DQN replay dataset (Agarwal et al., 2020). The horizontal line shows the evaluation performance of a fully-trained online DQN agent.
The scores are averaged over 3 runs (shown as traces) and smoothed over a sliding window of 3 iterations and error bands show standard
deviation.


