Chapter 1: Introduction

Seungjae Ryan Lee
Reinforcement Learning

- Learning by interacting with the environment
- Goal: maximize a numerical reward signal by choosing correct actions
 - Trial and error: learner is not told the best action
 - Delayed rewards: actions can affect all future rewards
vs. Supervised and Unsupervised Learning

- No external supervisor / teacher
 - No training set with labeled examples (answers)
 - Need to interact with environment in uncharted territories

- Different goals
 - Supervised Learning: Generalize existing data to minimize test set error
 - Reinforcement Learning: Maximize reward through interactions
 - Unsupervised Learning: Find hidden structure

→ Reinforcement Learning is a new paradigm of Machine Learning
Characteristics of Reinforcement Learning

● Interactions between agent and environment
● Uncertainty about the environment
 ○ Effects of actions cannot be fully predicted
 ○ Monitor environment and react appropriately
● Defined goal
 ○ Judge progress through rewards
● Present affects the future
 ○ Effect can be delayed
● Experience improves performance
Example: Preparing Breakfast

- Complex sequence of interactions to achieve goal
- Need to observe and react to the uncertainty of the environment
 - Grab different bowl if current bowl is dirty
 - Stop pouring if the bowl is about to overflow
- Actions have delayed consequences
 - Failing to get spoon does not matter until you start eating
- Experience improves performance
Exploration vs Exploitation

- **Exploration**: Try different actions
- **Exploitation**: Choose best known action
- Need both to obtain high reward
Elements of Reinforcement Learning

- **Policy** defines the agent’s behavior
- **Reward Signal** defines the goal of the problem
- **Value Function** indicates the long-term desirability of state
- **Model** of the environment mimics behavior of environment
Policy

- Mapping from *observation* to *action*
- Defines the agent’s behavior
- Can be stochastic
Reward Signal vs. Value Function

- **Reward**
 - Immediate reward of action
 - Defines good/bad events for the agent
 - Given by the environment

- **Value Function**
 - Sum of future rewards from a state
 - Long-term desirability of states
 - Difficult to estimate
 - **Primary basis of choosing action**
Model

- Mimics the behavior of environment
- Allow *planning* a future course of actions
- Not necessary for all RL methods
 - *Model-based* methods use the model for planning
 - *Model-free* methods only use trial-and-error

https://worldmodels.github.io/
Example: Tic Tac Toe

- Assume **imperfect opponent**
- Agent needs to find and exploit imperfections
Tic Tac Toe with Reinforcement Learning

- Initialize value functions to 0.5 (except terminal states)
- Learn by playing games
 - Move greedily most times, but explore sometimes
- Incrementally update value functions by playing games
- Decrease learning rate over time to converge

\[V(s) \leftarrow V(s) + \alpha [V(s') - V(s)] \]
Tic Tac Toe with other algorithms

- **Minimax algorithm**
 - Assumes best play for opponent → Cannot exploit opponent

- **Classic optimization**
 - Require complete specification of opponent → Impractical
 - ex. Dynamic Programming

- **Evolutionary methods**
 - Finds optimal algorithm
 - Ignores useful structure of RL problems
 - Works best when good policy can be found easily
Reinforcement Learning beyond Tic-Tac-Toe

- Can be applied to:
 - more complex games (ex. Backgammon)
 - problems without enemies (“games against nature”)
 - problems with partially observable environments
 - non-episodic problems
 - continuous-time problems

https://blog.openai.com/evolution-strategies/
Thank you!

Original content from

- Reinforcement Learning: An Introduction by Sutton and Barto

You can find more content in

- github.com/seungjaeryanlee
- www.endtoend.ai