Chapter 3: Finite Markov Decision Processes

Seungjae Ryan Lee
Markov Decision Process (MDP)

- Simplified, flexible reinforcement learning problem
- Consists of States S, Actions A, Rewards R

States
Info available to agent

Actions
Choice made by agent

Rewards
Basis for evaluating choices
The learner
Takes action

Everything outside the agent
Returns state and reward
Agent-Environment Boundary

- Anything the agent cannot \textit{arbitrarily change} is part of the environment
 - Agent might still \textit{know} everything about the environment
- Different boundaries for different purposes
Agent-Environment Interactions

1. Agent observes a state S_0
2. Agent takes action A_0
3. Agent receives reward R_1 and new state S_1
4. Agent takes another action A_1
5. Repeat
Transition Probability

- Probability of reaching state s' and reward r by taking action a on state s
- Fully describes the dynamics of a finite MDP

\[
p(s', r \mid s, a) \equiv \Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_t = a\}
\]

- Can deduce other properties of the environment

\[
p(s' \mid s, a) \equiv \Pr\{S_t = s' \mid S_{t-1} = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s', r \mid s, a)
\]
Expected Rewards

- Expected reward of taking action a on state s

$$ r(s, a) := \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} \sum_{s' \in \mathcal{S}} p(s', r \mid s, a) $$

- Expected reward of arriving in state s' by taking action a on state s

$$ r(s, a, s') := \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} \frac{p(s', r \mid s, a)}{p(s' \mid s, a)} $$
Recycling Robot Example

- States: Battery status (high or low)
- Actions
 - Search: High reward. Battery status can be lowered or depleted.
 - Wait: Low reward. Battery status does not change.
 - Recharge: No reward. Battery status changed to high.
- If battery is depleted, -3 reward and battery status changed to high.

| s | a | s' | $p(s' | s, a)$ | $r(s, a, s')$ |
|-------|--------|-------|---------------|---------------|
| high | search| high | α | r_{search} |
| high | search| low | $1 - \alpha$ | r_{search} |
| low | search| high | $1 - \beta$ | -3 |
| low | search| low | β | r_{search} |
| high | wait | high | 1 | r_{wait} |
| high | wait | low | 0 | r_{wait} |
| low | wait | high | 0 | r_{wait} |
| low | wait | low | 1 | r_{wait} |
| low | recharge | high | 1 | 0 |
| low | recharge | low | 0 | 0 |
Transition Graph

- Graphical summary of MDP dynamics
Designing Rewards

- Reward hypothesis
 - Goals and purposes can be represented by maximization of cumulative reward
- Tell *what* you want to achieve, not *how*

- Always -1
- Proportional to forward action
- +1 for each box
Episodic Tasks

- Interactions can be broken into episodes
- Episodes end in a special terminal state
- Each episode is independent

Finished when the game ends
Finished when the agent is out of the maze
Return for Episodic Tasks

- Sum of rewards from time step t
- Time of termination: T

\[
G_t = R_{t+1} + R_{t+2} + \ldots R_T
\]

\[
G_t = \sum_{k=t+1}^{T} R_k
\]
Continuing Tasks

- Cannot be naturally broken into episodes
- Goes on without limit

Stock Trading
Return for Continuing Tasks

- Sum of rewards is almost always infinite
- Need to *discount* future rewards by factor \(0 \leq \gamma < 1\)
 - If \(\gamma = 0\), the return only considers immediate reward (*myopic*)

\[
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \ldots
\]

\[
G_t = \sum_{k=t+1}^{\infty} \gamma^{k-t-1} R_k
\]
Unified Notation for Return

- Cumulative reward
- T can be a finite number or infinity
- Future rewards can be discounted with factor γ
 - If $T = \infty$, then γ must be less than 1.

$$G_t := \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$
Policy

- Mapping from states to probabilities of selecting each possible action
- $\pi(a \mid s)$: Probability of selecting action a in state s
State-value function

- Expected return from state s and following policy π

$$
\nu_\pi := \mathbb{E}_\pi [G_t \mid S_t = s]
$$

$$
:= \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right]
$$
Action-value function

- Expected return from taking action a in state s and following policy π

\[
q_\pi := \mathbb{E}_\pi [G_t \mid S_t = s, A_t = a]
\]

\[
:= \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]
\]
Bellman Equation

- Recursive relationship between \(v_\pi(s) \) and \(v_\pi(s') \)

\[
v_\pi(s) = \sum_a \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_\pi(s') \right]
\]
Optimal Policies π^* and Value Functions v^*, q^*

- For any policy π, $v_{\pi^*(s)} \geq v_{\pi}(s)$ for all states s.
- There can be multiple optimal policies.
- All optimal policies share the same optimal value functions:

$$v^*(s) \doteq \max_{\pi} v_{\pi}(s)$$

$$q^*(s, a) \doteq \max_{\pi} q_{\pi}(s, a)$$
Bellman Optimality Equation

- Bellman Equation for optimal policies

\[v_*(s) = \max_a \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_*(s') \right] \]

\[q_*(s, a) = \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right] \]
Solving Bellman Optimality Equation

- Linear system: $|S|$ equations, $|S|$ unknowns
- Possible to find the exact optimal policy
- Impractical in most environments
 - Need to know the dynamics of the environment
 - Need extreme computational power
 - Need Markov property

→ In most cases, approximation is the best possible solution.
Approximation

- Does not require complete knowledge of environment
- Less memory and computational power needed
- Can focus learning on frequently encountered states
Thank you!

Original content from

- Reinforcement Learning: An Introduction by Sutton and Barto

You can find more content in

- github.com/seungjaeryanlee
- www.endtoend.ai