Playing Atari with Deep Reinforcement Learning (13.12)

Seungjae Ryan Lee

Previous Applications of RL

- Linear value functions or policy representations
 - Rely on hand-crafted features
 - Feature representation determines performance
- Can diverge with model-free RL, nonlinear approximation, off-policy

TD-gammon

- Superhuman-level Backgammon playing RL agent
- Model-free algorithm with one-hidden-layer MLP
- Considered a "special case"

backgammon position (198 input units)

endtoend.

Meanwhile, in Deep Learning...

• CNN, MLP, RNN

- Extract high-level features from raw data
- Works in both supervised and unsupervised learning

• Will it work on Reinforcement Learning?

http://fromdata.org/2015/10/01/imagenet-cnn-architecture-image/

Problems of combining DL and RL

- No labelled data: only sparse, noisy, delayed rewards
- Breaks most underlying assumptions of deep learning algorithms
 - Highly correlated data
 - Moving distribution of data

Proposal: Experience Replay

- Idea originally by Long-Ji Lin
- Save transitions in a replay memory D
- Randomly sample previous transitions to update parameters

$$\begin{array}{c|c} s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \\ \vdots \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s_{t}, a_{t}, r_{t+1}, s_{t+1} \\ \hline \end{array}$$

endtoend. <mark>ai</mark>

https://pdfs.semanticscholar.org/54c4/cf3a8168c1b70f91cf78a3dc98b671935492.pdf

Advantages of Experience Replay

- 1. Achieve greater data efficiency
 - Each experience is used multiple times
- 2. Break correlation between samples
 - Randomly sampled experience is nonconsecutive
- 3. Average the behavior distribution
 - Current parameters does not affect incoming data distribution

Preprocessing

- Originally 210×160 image with 128 color palette
- Gray-scale and downsampled to 110×84
- Cropped to 84×84
 - Only to fit particular GPU implementation
- Frame stacking
 - Stack 4 preprocessed frames as input
 - Need multiple frames for velocity, etc.

Model Architecture: Deep Q-Networks (DQN)

• Return Q values for all 10 actions

endtoend.at

https://nthu-datalab.github.io/ml/labs/17_DQN_Policy_Network/17-DQN_&_Policy_Network.html

Environment: Atari 2600

- 7 games selected
- Create a single agent that can play as many games possible
 - No game-specific information
 - No hand-designed features
 - Same network architecture and hyperparameters

https://github.com/mgbellemare/Arcade-Learning-Environment

Reward Clipping

- Clip all rewards to $\{-1, 0, 1\}$
 - Fix all positive reward as +1
 - Fix all negative rewards as −1
 - Leave zero rewards unchanged

- Limits scale of error derivatives for different games
- Cannot differentiate between rewards of different magnitude

Frame Skipping

- Agent sees and selects actions on every k^{th} frame
- Action is repeated on skipped frames
- Agent can play roughly k times more games

endtoend

Training and Stability

- How to evaluate agent during training?
 - Total episodic reward: very noisy
 - Policy's estimated Q function: smooth

• Did not encounter any divergence issue in practice

Result on Atari 2600

- Outperform all previous RL algorithms in 6 games
- Surpass expert human player in 3 games

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Thank you!

Original Paper: https://arxiv.org/abs/1312.5602

Paper Recommendations:

- [1502] Human-level control through Deep Reinforcement Learning
- [1511.05952] Prioritized Experience Replay
- [1712.01275] A Deeper Look at Experience Replay

You can find more content in <u>www.endtoend.ai/slides</u>

